当前位置:首页 > 实用文 > 教案

一次函数的图象教案

时间:2024-05-30 11:58:50
一次函数的图象教案

一次函数的图象教案

作为一名教职工,时常需要编写教案,教案是备课向课堂教学转化的关节点。写教案需要注意哪些格式呢?下面是小编精心整理的一次函数的图象教案,仅供参考,大家一起来看看吧。

一次函数的图象教案1

一、学生起点分析

八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.

二、教学任务分析

《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.

为此本节课的教学目标是:

1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.

2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.

3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.

4.理解一次函数的代数表达式与图象之间的一一对应关系.

教学重点是:

初步了解作函数图象的一般步骤:列表、描点、连线.

教学难点是:

理解一次函数的代数表达式与图象之间的一一对应关系.

三、教学过程设计

本节课设计了七个教学环节:

第一环节:创设情境引入课题;

第二环节:画一次函数的图象;

第三环节:动手操作,深化探索;

第四环节:巩固练习,深化理解;

第五环节:课时小结;

第六环节:拓展探究;

第七环节:作业布置.

第一环节:创设情境引入课题

内容:

一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?

我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

目的:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.

效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望.

第二环节:画正比例函数的图象

内容:首先我们来学习什么是函数的图象?

把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).

例1请作出正比例函数y=2x的图象.

第三环节:动手操作,深化探索

内容:做一做

(1)作出正比例函数y= 3x的图象.

(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y= 3x.

请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.

(1)满足关系式y= 3x的x,y所对应的点(x,y)都在正比例函数y= 3x的图象上吗?

(2)正比例函数y= 3x的图象上的点(x,y)都满足关系式y= 3x吗?

(3)正比例函数y=kx的图象有什么特点?

明晰

由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式.正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.

议一议

既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?

因为“两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.

4.3一次函数的图象:同步测试

14若直线经过第一.二.四象限,则k.b的取值范围是( ).

A.k>0,b>0 B.k>0,b<0

C.k<0,b>0 D. k<0,b<0

2.已知一次函数y=3-2x

(1)求图像与两条坐标轴的交点坐标,并在下面的直角坐标系中画出它的图像;

(2)从图像看,y随着x的增大而增大,还是随x的增大而减小?

(3)x取何值时,y>0?

3.已知一次函数y=-2x+4

(1)画出函数的图象.

(2)求图象与x轴、y轴的交点A、B的坐标.

(3)求A、B两点间的距离.

(4)求△AOB的面积.

(5)利用图象求当x为何值时,y≥0.

《函数的图象》课后练习

1.一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长1.5cm,挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()

A.y=1.5(x+12)(0≤x≤10)

B.y= 1.5x+12(0≤x≤10)

C.y=1.5x+10(x≥0)

D.y=1.5(x-12)(0≤x≤10)

一次函数的图象教案2

一、教学目标

知识与技能目标

1、继续巩固一次函数的作图方法;

2、结合一次函数的图像,掌握一次函数及其图像的简单性质。

过程与方法目标

1、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;

2、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。

情感与态度目标

经历一次函数及性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。

二、教材分析

本节通过对一次函数图像的研究,对一次函数的单调性作了探讨;对一次函 ……此处隐藏10681个字……点是(0,0)④y=0.5x+2与y=3x+2,相交,交点是(0,2)。我们认为,当k值相同,且b值也相同时,两直线相交的交点是(0,b)。

师:(出示小规律)同学们观察的都很仔细,回答很好,要继续努力!

师:刚才同学说的,当k值相同,且b值也相同时,两个函数图象又是什么样的位置关系?(因为两直线的位置关系学生都会,所以学生很容易回答)

生:重合。

师:老师考一考你,有没有信心?

生:有。

师:(出示幻灯片6)不画图象,你能说出下列每对函数的图象位置上有什么关系吗?

①直线y=-2x-1与直线y=-2x+5; ②直线y=0.6x-3与直线y=-x-3。

生1:①两直线平行。②两直线相交,交点是(0,-3)。

生2:①两直线平行。②两直线相交,交点是(0,-3)。

师:一次函数的图象都是直线,它们的形状都 ,只是位置 。

问(3):我们能不能将其中一条直线通过平移、旋转或对称性,使它们和另一条直线重合。你试试看。(自主探索同桌交流)(3分钟)

生1:(幻灯片5)①y=0.5x与y=0.5x+2;将y=0.5x平移能得到y=0.5x+2。

生2:③y=0.5x与y=3x;将y=0.5x旋转后能得到y=3x。

生3:②y=3x与y=3x+2;通过平移能得到y=3x+2。④y=0.5x+2与y=3x+2。通过旋转能得到y=3x+2。

师:同学们规律找得都很好,我们这节课只研究平移。

问(4):①y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 (向上或向下),平行移动 单位得到y=0.5x+2?组②呢?(5分钟)

(学生动力操作尝试小组交流归纳小组汇报)

组1:直线y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。

组2:直线y=3x向上平移2个单位能得到直线y=3x+2。

组3:直线y=3x+2向下平移2个单位能得到直线y=3x。

生4:老师,我发现直线y=0.5x+2向下平移2个单位能得到直线y=0.5x。

生5:老师,我们组发现直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。在这个过程中,都是0.5,却加上了个2。

师:(同学们说的都很好,生5的发现更好,)

师:出示幻灯片7,然后按来通过动画演示平行移动的过程。

问(5):在上面的2个变化过程中,观察关系式中k和b的值有没有变化?有什么样的变化?(生独立思考,回答)(3分钟)

生1:k值不变,b值变化。

生2:k值不变,b值变化;当向上平移几个单位,b值就加上几;当向下平移几个单位,b就减去几。

师:出示幻灯片7上的小规律。

做一做:(独立完成小组交流师生总结)(4分钟)

(1)将直线y= -3x沿 y轴向下平移2个单位,得到直线( )。

(2)直线y=4x+2是由直线y=4x-1沿y轴向( )平移( )个单位得到的。

(3)将直线y=-x-5向上平移6个单位,得到直线( )。

(4)先将直线y=x+1向上平移3个单位,再向下平移5个单位,得到直线( )。

组1汇报结果。

师:在这些问题中还有没有需要老师帮忙解决的?

生:没有。

三、你能谈谈你这节课的收获吗?(2分钟)

生1:我知道了一次函数图象是直线,所以可以说直线y=kx+b(k0)

我还学会了用两点法画一次函数的图象。

生2:我觉得学习一次函数,既离不开数,也离不开图形。

生3:我知道当k值相同,b值不同时,两个一次函数图象平行,当k值不同时,两个次函数图象相交。

生4:我知道一条直线通过平移可以得到另一条直线,函数关系式中k,b值的变化情况。

四、测一测:(6分钟)

师:老师觉得你们学的不错,你们认为自己学的怎么样?

生:好

师:让我们比一比,看一看谁是这节课学得最好的?哪个小组是最优秀的小组?

师出示幻灯片,提出要求:独立完成测试题,不能偷看别人的,也不能别人看,否则按作弊处理,给个人和小组都扣分)

一、填空:1、一次函数y=kx+b(k0)的图象是( ),若该函数图象过原点,那么它是( )。

2、如果直线y=kx+b与直线y=0.5x平行,且与直线y=3x+2交于点(0,2),则该直线的函数关系式是( )。

3、把直线y=2/3x+1向上平行移动3个单位,得到的图象的关系式是( )

4、直线y=-2x+1与直线y=-2x-1的关系是( ),直线y=-x+4与直线y=3x+4的关系是( )。

5、直线y1=(2m-1)x+1与直线y2=(m+4)x-3m平行,则m的取值是( )。

二、选择:6、在函数y=kx+3中,当k取不同的非零实数时,就得到不同的直线,那么这些直线必定( )

A、交于同一个点 B、互相平行

C、有无数个不同的交点 D、交点的个数与k的具体取值有关

7、函数y=3x+b,当b取一系列不同的数值时,它们图象的共同点是( )

A、交于同一个点 B、互相平行的直线

C、有无数个不同的交点 D、交点个数的多少与b的具体取值有关

在做完之后,师:小组之间交换测试题,老师出示幻灯片上的答案。

师:看完之后,统计出其小组的成员的成绩以及平均分数,就是该小组的成绩。(老师对优秀个人和小组给予表扬!)

师:同学们,个人更正错题,可以小组帮助,也可以请老师帮助。

师给予学生一定的时间,问:同学们对于这节课还有没有疑问?

生:没有。

四、作业:

在同一坐标系中画出下列函数的图象,并说出它们有什么关系?

(1)y=2x与y=2x+3

(2)y=-x+1与y=-3x+1

五、课外延伸:

直线y=0.5x沿x轴向 (向左或向右),平行移动 个单位得到直线y=0.5x+2。

  六、教后反思:

在本节课的教学中,我坚持以学生为主体,采用自主探究小组合作、交流问题升华的教学模式。既注重学生基础知识的掌握,又重视学生学习习惯、自主探究、合作学习能力的培养,同时每一个问题都向学生渗透数学形结合的数学思想。每一个问题的解决我都坚持做到:给学生自主探究问题的机会;在学生想展示自己的做法时,给学生充足的时间让他们去合作交流当学习达到高潮时,引导学生将问题延伸,升华思想;最后,精心设计问题,拓宽学生知识面,培养创造性思维。

《一次函数的图象教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式